Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/221348
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Méndez Pérez, Almudena | - |
dc.contributor.author | Acosta Moreno, Andrés Miguel | - |
dc.contributor.author | Wert Carvajal, Carlos | - |
dc.contributor.author | Ballesteros Cuartero, Pilar | - |
dc.contributor.author | Sánchez García, Rubén | - |
dc.contributor.author | Macías, José Ramón | - |
dc.contributor.author | Sanz Pamplona, Rebeca | - |
dc.contributor.author | Alemany Bonastre, Ramon | - |
dc.contributor.author | Oscar Sorzano, Carlos | - |
dc.contributor.author | Muñoz Barrutia, Arrate | - |
dc.contributor.author | Veiga, Esteban | - |
dc.date.accessioned | 2025-06-03T15:10:53Z | - |
dc.date.available | 2025-06-03T15:10:53Z | - |
dc.date.issued | 2025-03-11 | - |
dc.identifier.issn | 2050-084X | - |
dc.identifier.uri | https://hdl.handle.net/2445/221348 | - |
dc.description.abstract | In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies. | - |
dc.format.extent | 10 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | eLife Sciences Publications, Ltd | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.7554/eLife.95010 | - |
dc.relation.ispartof | eLife, 2025, vol. 13 | - |
dc.relation.uri | https://doi.org/10.7554/eLife.95010 | - |
dc.rights | cc-by (c) Méndez Pérez et al., 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL)) | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Vacunació | - |
dc.subject.classification | Terapèutica | - |
dc.subject.classification | Tumors | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Vaccination | - |
dc.subject.other | Therapeutics | - |
dc.subject.other | Tumors | - |
dc.title | Unraveling the Power of NAP-CNB’s Machine Learning-enhanced Tumor Neoantigen Prediction | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.date.updated | 2025-05-20T13:50:44Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
dc.identifier.pmid | 40067759 | - |
Appears in Collections: | Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
elife-95010-v1.pdf | 1.51 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License