Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221348
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMéndez Pérez, Almudena-
dc.contributor.authorAcosta Moreno, Andrés Miguel-
dc.contributor.authorWert Carvajal, Carlos-
dc.contributor.authorBallesteros Cuartero, Pilar-
dc.contributor.authorSánchez García, Rubén-
dc.contributor.authorMacías, José Ramón-
dc.contributor.authorSanz Pamplona, Rebeca-
dc.contributor.authorAlemany Bonastre, Ramon-
dc.contributor.authorOscar Sorzano, Carlos-
dc.contributor.authorMuñoz Barrutia, Arrate-
dc.contributor.authorVeiga, Esteban-
dc.date.accessioned2025-06-03T15:10:53Z-
dc.date.available2025-06-03T15:10:53Z-
dc.date.issued2025-03-11-
dc.identifier.issn2050-084X-
dc.identifier.urihttps://hdl.handle.net/2445/221348-
dc.description.abstractIn this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publishereLife Sciences Publications, Ltd-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.7554/eLife.95010-
dc.relation.ispartofeLife, 2025, vol. 13-
dc.relation.urihttps://doi.org/10.7554/eLife.95010-
dc.rightscc-by (c) Méndez Pérez et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationVacunació-
dc.subject.classificationTerapèutica-
dc.subject.classificationTumors-
dc.subject.otherMachine learning-
dc.subject.otherVaccination-
dc.subject.otherTherapeutics-
dc.subject.otherTumors-
dc.titleUnraveling the Power of NAP-CNB’s Machine Learning-enhanced Tumor Neoantigen Prediction-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2025-05-20T13:50:44Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid40067759-
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
elife-95010-v1.pdf1.51 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons