Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221348
Title: Unraveling the Power of NAP-CNB’s Machine Learning-enhanced Tumor Neoantigen Prediction
Author: Méndez Pérez, Almudena
Acosta Moreno, Andrés Miguel
Wert Carvajal, Carlos
Ballesteros Cuartero, Pilar
Sánchez García, Rubén
Macías, José Ramón
Sanz Pamplona, Rebeca
Alemany Bonastre, Ramon
Oscar Sorzano, Carlos
Muñoz Barrutia, Arrate
Veiga, Esteban
Keywords: Aprenentatge automàtic
Vacunació
Terapèutica
Tumors
Machine learning
Vaccination
Therapeutics
Tumors
Issue Date: 11-Mar-2025
Publisher: eLife Sciences Publications, Ltd
Abstract: In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.
Note: Reproducció del document publicat a: https://doi.org/10.7554/eLife.95010
It is part of: eLife, 2025, vol. 13
URI: https://hdl.handle.net/2445/221348
Related resource: https://doi.org/10.7554/eLife.95010
ISSN: 2050-084X
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
elife-95010-v1.pdf1.51 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons