Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/221484
Title: | A proof of Torelli's theorem for compact Riemann surfaces |
Author: | Boukafri Itahriouan, Redouan |
Director/Tutor: | Naranjo del Val, Juan Carlos |
Keywords: | Corbes modulars Automorfismes Funcions theta Superfícies de Riemann Treballs de fi de grau Modular curves Automorphisms Theta functions Riemann surfaces Bachelor's theses |
Issue Date: | 15-Jan-2025 |
Abstract: | The aim of this work is to explore algebraic geometry and its connections with complex analysis and topology through a proof of Torelli’s Theorem for compact Riemann surfaces. The theorem asserts that a compact Riemann surface is uniquely determined by its Jacobian and theta divisor. To establish this result, we first develop the theoretical framework, beginning with differential 1-forms and the concept of divisors. We then prove the Riemann-Roch Theorem, followed by a study of the theory of Jacobians via the Abel Theorem. These tools and results finally culminate in the proof of Torelli’s Theorem. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Juan Carlos Naranjo del Val |
URI: | https://hdl.handle.net/2445/221484 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_Boukafri_Itahriouan_Redouan.pdf | Memòria | 803.15 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License