Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221484
Title: A proof of Torelli's theorem for compact Riemann surfaces
Author: Boukafri Itahriouan, Redouan
Director/Tutor: Naranjo del Val, Juan Carlos
Keywords: Corbes modulars
Automorfismes
Funcions theta
Superfícies de Riemann
Treballs de fi de grau
Modular curves
Automorphisms
Theta functions
Riemann surfaces
Bachelor's theses
Issue Date: 15-Jan-2025
Abstract: The aim of this work is to explore algebraic geometry and its connections with complex analysis and topology through a proof of Torelli’s Theorem for compact Riemann surfaces. The theorem asserts that a compact Riemann surface is uniquely determined by its Jacobian and theta divisor. To establish this result, we first develop the theoretical framework, beginning with differential 1-forms and the concept of divisors. We then prove the Riemann-Roch Theorem, followed by a study of the theory of Jacobians via the Abel Theorem. These tools and results finally culminate in the proof of Torelli’s Theorem.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Juan Carlos Naranjo del Val
URI: https://hdl.handle.net/2445/221484
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_Boukafri_Itahriouan_Redouan.pdfMemòria803.15 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons