Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYamamoto, Hideaki-
dc.contributor.authorSpitzner, F. Paul-
dc.contributor.authorTakemuro, Taiki-
dc.contributor.authorBuendía, Victor-
dc.contributor.authorMurota, Hakuba-
dc.contributor.authorMorante, Carla-
dc.contributor.authorKonno, Tomohiro-
dc.contributor.authorSato, Shigeo-
dc.contributor.authorHirano-Iwata, Ayumi-
dc.contributor.authorLevina, Anna-
dc.contributor.authorPriesemann, Viola-
dc.contributor.authorMuñoz, Miguel A.-
dc.contributor.authorZierenberg, Johannes-
dc.contributor.authorSoriano i Fradera, Jordi-
dc.date.accessioned2025-06-11T15:45:33Z-
dc.date.available2025-06-11T15:45:33Z-
dc.date.issued2023-08-25-
dc.identifier.urihttps://hdl.handle.net/2445/221490-
dc.description.abstractHigh-level information processing in the mammalian cortex requires both egregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Association for the Advancement of Science-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1126/sciadv.ade1755-
dc.relation.ispartofScience Advances, 2023, vol. 9, p. 1-12-
dc.relation.urihttps://doi.org/10.1126/sciadv.ade1755-
dc.rightscc-by (c) Yamamoto, H. et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationMamífers-
dc.subject.classificationMètodes de simulació-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherMammals-
dc.subject.otherSimulation methods-
dc.titleModular architecture facilitates noise-driven control of synchrony in neuronal networks-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec739575-
dc.date.updated2025-06-11T15:45:33Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)
Articles publicats en revistes (Institut de Recerca en Sistemes Complexos (UBICS))

Files in This Item:
File Description SizeFormat 
832717.pdf1.32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons