Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/221497
Title: | Classification of affine equivalence classes of $\mathbb{Z}_p$-manifolds using Bieberbach groups |
Author: | Carol Raventós |
Director/Tutor: | Mundet i Riera, Ignasi |
Keywords: | Geometria diferencial Varietats de Riemann Homologia Treballs de fi de grau Differential geometry Riemannian manifolds Homology Bachelor's theses |
Issue Date: | 15-Jan-2025 |
Abstract: | This work investigates the classification of $\mathbb{Z}_p$-manifolds, compact (pathconnected) Riemannian manifolds whose holonomy group is isomorphic to $\mathbb{Z}_p$, up to affine equivalence. It uses the foundational results of Bieberbach groups and cohomological methods to achieve two primary objectives: classifying affine equivalence classes of $\mathbb{Z}_p$-manifolds and analyzing the case where non-homotopic $\mathbb{Z}_p$-manifolds become affinely equivalent when taking the product by $S^1$. This work also provides a way to find pairs of such non-homotopic $\mathbb{Z}_p$-manifolds that become isomorphic after taking Cartesian product by $S^1$. Notation: In this work, $\mathbb{Z}_p$ refers to $\mathbb{Z} / p \mathbb{Z}$, where $p \in \mathbb{Z}, p \neq 0$. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Ignasi Mundet i Riera |
URI: | https://hdl.handle.net/2445/221497 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_Gerard_Carol_Raventos.pdf | Memòria | 661.63 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License