Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221497
Title: Classification of affine equivalence classes of $\mathbb{Z}_p$-manifolds using Bieberbach groups
Author: Carol Raventós
Director/Tutor: Mundet i Riera, Ignasi
Keywords: Geometria diferencial
Varietats de Riemann
Homologia
Treballs de fi de grau
Differential geometry
Riemannian manifolds
Homology
Bachelor's theses
Issue Date: 15-Jan-2025
Abstract: This work investigates the classification of $\mathbb{Z}_p$-manifolds, compact (pathconnected) Riemannian manifolds whose holonomy group is isomorphic to $\mathbb{Z}_p$, up to affine equivalence. It uses the foundational results of Bieberbach groups and cohomological methods to achieve two primary objectives: classifying affine equivalence classes of $\mathbb{Z}_p$-manifolds and analyzing the case where non-homotopic $\mathbb{Z}_p$-manifolds become affinely equivalent when taking the product by $S^1$. This work also provides a way to find pairs of such non-homotopic $\mathbb{Z}_p$-manifolds that become isomorphic after taking Cartesian product by $S^1$. Notation: In this work, $\mathbb{Z}_p$ refers to $\mathbb{Z} / p \mathbb{Z}$, where $p \in \mathbb{Z}, p \neq 0$.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Ignasi Mundet i Riera
URI: https://hdl.handle.net/2445/221497
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_Gerard_Carol_Raventos.pdfMemòria661.63 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons