Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221672
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMorote, Juan-
dc.contributor.authorMiro, Berta-
dc.contributor.authorHernando Sánchez, Patricia-
dc.contributor.authorPaesano, Nahuel-
dc.contributor.authorPicola, Natalia-
dc.contributor.authorMuñoz Rodriguez, Jesús-
dc.contributor.authorRuiz Plazas, Xavier-
dc.contributor.authorMuñoz Rivero, Marta Viridiana-
dc.contributor.authorCelma, Ana-
dc.contributor.authorGarcía de Manuel, Gemma-
dc.contributor.authorServian, Pol-
dc.contributor.authorAbascal Junquera, José Maria-
dc.contributor.authorTrilla Herrera, Enrique-
dc.contributor.authorMéndez, Olga-
dc.date.accessioned2025-06-20T10:28:27Z-
dc.date.available2025-06-20T10:28:27Z-
dc.date.issued2025-03-25-
dc.identifier.issn2072-6694-
dc.identifier.urihttps://hdl.handle.net/2445/221672-
dc.description.abstractObjective: This study compares machine learning (ML) and logistic regression (LR) algorithms in developing a predictive model for sPCa using the seven predictive variables from the Barcelona (BCN-MRI) predictive model. Method: A cohort of 5005 men suspected of having PCa who underwent MRI and targeted and/or systematic biopsies was used for training, testing, and validation. A feedforward neural network (FNN)-based SimpleNet model (GMV) and a logistic regression-based model (BCN) were developed. The models were evaluated for discrimination ability, precision-recall, net benefit, and clinical utility. Both models demonstrated strong predictive performance. Results: The GMV model achieved an area under the curve of 0.88 in training and 0.85 in test cohorts (95% CI: 0.83-0.90), while the BCN model reached 0.85 and 0.84 (95% CI: 0.82-0.87), respectively (p > 0.05). The GMV model exhibited higher recall, making it more suitable for clinical scenarios prioritizing sensitivity, whereas the BCN model demonstrated higher precision and specificity, optimizing the reduction of unnecessary biopsies. Both models provided similar clinical benefit over biopsying all men, reducing unnecessary procedures by 27.5-29% and 27-27.5% of prostate biopsies at 95% sensitivity, respectively (p > 0.05). Conclusions: Our findings suggest that both ML and LR models offer high accuracy in sPCa detection, with ML exhibiting superior recall and LR optimizing specificity. These results highlight the need for model selection based on clinical priorities.-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/cancers17071101-
dc.relation.ispartofCancers, 2025, vol. 17, num. 7-
dc.relation.urihttps://doi.org/10.3390/cancers17071101-
dc.rightscc-by (c) Morote, Juan et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))-
dc.subject.classificationCàncer de pròstata-
dc.subject.classificationAprenentatge profund-
dc.subject.classificationDiagnòstic-
dc.subject.otherProstate cancer-
dc.subject.otherDeep learning (Machine learning)-
dc.subject.otherDiagnosis-
dc.titleDeveloping a Predictive Model for Significant Prostate Cancer Detection in Prostatic Biopsies from Seven Clinical Variables: Is Machine Learning Superior to Logistic Regression?-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2025-06-10T13:44:35Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid40227611-
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
cancers-17-01101-v4.pdf3.34 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons