Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalaguer Montero, María-
dc.contributor.authorMorales, Adrià Marcos-
dc.contributor.authorLigero Hernández, Marta-
dc.contributor.authorZatse, Christina-
dc.contributor.authorLeiva Pedraza, David-
dc.contributor.authorAtlagich, Luz M.-
dc.contributor.authorStaikoglou, Nikolaos-
dc.contributor.authorViaplana, Cristina-
dc.contributor.authorMonreal, Camilo-
dc.contributor.authorMateo Valderrama, Joaquín-
dc.contributor.authorHernando Cubero, Jorge-
dc.contributor.authorGarcía Alvárez, Alejandro-
dc.contributor.authorSalvà, Francesc-
dc.contributor.authorCapdevila, Jaume-
dc.contributor.authorElez, Elena-
dc.contributor.authorDienstmann, Rodrigo-
dc.contributor.authorGarralda, Elena-
dc.contributor.authorPérez López, Raquel-
dc.date.accessioned2025-06-20T11:27:25Z-
dc.date.available2025-06-20T11:27:25Z-
dc.date.issued2025-03-20-
dc.identifier.issn2666-3791-
dc.identifier.urihttps://hdl.handle.net/2445/221685-
dc.description.abstractLiver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598 computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment. SALSA's automatic quantification of tumor volume proves to have prognostic value across various solid tumors (p = 0.028). SALSA's robust capabilities position it as a potential medical device for automatic cancer detection, staging, and response evaluation.-
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier BV-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.xcrm.2025.102032-
dc.relation.ispartofCell Reports Medicine, 2025, vol. 6, num. 4-
dc.relation.urihttps://doi.org/10.1016/j.xcrm.2025.102032-
dc.rightscc-by-nc-nd (c) Balaguer Montero et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))-
dc.subject.classificationCàncer de fetge-
dc.subject.classificationAprenentatge profund-
dc.subject.classificationClassificació de tumors-
dc.subject.otherLiver cancer-
dc.subject.otherDeep learning (Machine learning)-
dc.subject.otherTumors classification-
dc.titleA CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2025-06-11T13:47:56Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid40118052-
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
1-s2.0-S2666379125001053-main.pdf5.27 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons