Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221797
Title: Conditional likelihood based inference on single-index models for motor insurance claim severity
Author: Bolancé Losilla, Catalina
Cao, Ricardo
Guillén, Montserrat
Keywords: Anàlisi de variància
Assegurances d'automòbils
Estimació d'un paràmetre
Analysis of variance
Automobile insurance
Parameter estimation
Issue Date: 1-Jul-2024
Publisher: Institut d'Estadística de Catalunya
Abstract: Prediction of a traffc accident cost is one of the major problems in motor insurance. To identify the factors that infuence costs is one of the main challenges of actuarial modelling. Telematics data about individual driving patterns could help calculating the expected claim severity in motor insurance. We propose using single-index models to assess the marginal effects of covariates on the claim severity conditional distribution. Thus, drivers with a claim cost distribution that has a long tail can be identifed. These are risky drivers, who should pay a higher insurance premium and for whom preventative actions can be designed. A new kernel approach to estimate the covariance matrix of coeffcients’ estimator is outlined. Its statistical properties are described and an application to an innovative data set containing information on driving styles is presented. The method provides good results when the response variable is skewed.
Note: Reproducció del document publicat a: https://doi.org/10.57645/20.8080.02.20
It is part of: Sort (Statistics and Operations Research Transactions), 2024, vol. 48, p. 235-258
URI: https://hdl.handle.net/2445/221797
Related resource: https://doi.org/10.57645/20.8080.02.20
ISSN: 1696-2281
Appears in Collections:Articles publicats en revistes (Econometria, Estadística i Economia Aplicada)

Files in This Item:
File Description SizeFormat 
866414.pdf792.5 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons