Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221809
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCirici, Joana-
dc.contributor.authorLapeña Capilla, Arnau-
dc.date.accessioned2025-06-27T07:08:07Z-
dc.date.available2025-06-27T07:08:07Z-
dc.date.issued2025-01-15-
dc.identifier.urihttps://hdl.handle.net/2445/221809-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Joana Ciricica
dc.description.abstractQuantum entanglement is key to the development of more advanced and efficient technologies. While its nature can be conceptually confusing, it admits mathematical descriptions. This work begins with an overview of quantum mechanics fundamentals, followed by a study of methods to characterize and quantify entanglement. Such methods are based on a complex projective geometry approach, with Segre embeddings playing a central role. Once we have gone deeper into this mathematical formalism, we explore how quantum teleportation works. Thanks to some properties that entanglement exhibits, qubits of information can be transmitted from one point to another using only classical bits. Finally, we establish a set of conditions under which a two-qubit state can be utilized for quantum teleportation and, furthermore, qualifies as a maximally entangled state. For other states, we briefly introduce an algorithm for achieving better teleportation results.en
dc.description.abstractL’entrellaçament quàntic és clau per al desenvolupament de tecnologies més avançades i eficients. Tot i que la seva naturalesa pot resultar conceptualment confusa, admet descripcions matemàtiques. Aquest treball comença amb una visió general dels fonaments de la mecànica quàntica, seguida d’un estudi de mètodes per caracteritzar i quantificar l’entrellaçament. Tals mètodes es basen en un enfocament de geometria projectiva complexa, amb les Segre embeddings com a element central. Un cop aprofundit en aquest formalisme matemàtic, explorem com funciona la teleportació quàntica. Gràcies a algunes propietats que exhibeix l’entrellaçament, els qubits d’informació poden ser transmesos de manera segura d’un punt a un altre utilitzant només bits clàssics. Finalment, establim un conjunt de condicions sota les quals un estat de dos qubits pot ser utilitzat per a la teleportació quàntica i, a més, qualifica com un estat màximament entrellaçat. Per a altres estats, fem una introducció breu d’un algorisme per tal d’assolir millors resultats de teleportació.ca
dc.format.extent68 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Arnau Lapeña Capilla, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.classificationTeoria quànticaca
dc.subject.classificationEntrellaçament quàntic-
dc.subject.classificationGeometria biracionalca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherQuantum theoryen
dc.subject.otherQuantum entanglement-
dc.subject.otherBirational geometryen
dc.subject.otherBachelor's thesesen
dc.titleEntanglement, Segre Embeddings and Quantum Teleportationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_Arnau_Lapeña_Capilla.pdfMemòria1.19 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons