Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221841
Title: CGeNArate: a sequence-dependent coarse-grained model of DNA for accurate atomistic MD simulations of kb-long duplexes
Author: Farré Gil, David
Arcon, Juan Pablo
Laughton, Charles A.
Orozco López, Modesto
Keywords: Biotecnologia
Sistemes hamiltonians
Dinàmica molecular
Cromatina
Biotechnology
Hamiltonian systems
Molecular dynamics
Chromatin
Issue Date: 8-Jul-2024
Publisher: Oxford University Press
Abstract: We present CGeNArate, a new model for molecular dynamics simulations of very long segments of B-DNA in the context of biotechnological or chromatin studies. The developed method uses a coarse-grained Hamiltonian with trajectories that are back-mapped to the atomistic resolution level with extreme accuracy by means of Machine Learning Approaches. The method is sequence-dependent and reproduces very well not only local, but also global physical properties of DNA. The efficiency of the method allows us to recover with a reduced computational effort high-quality atomic-resolution ensembles of segments containing many kilobases of DNA, entering into the gene range or even the entire DNA of certain cellular organelles.
Note: Reproducció del document publicat a: https://doi.org/10.1093/nar/gkae444
It is part of: Nucleic Acids Research, 2024, vol. 52, num.12, p. 6791-6801
URI: https://hdl.handle.net/2445/221841
Related resource: https://doi.org/10.1093/nar/gkae444
ISSN: 0305-1048
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)
Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
895471.pdf8.69 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons