Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222247
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVegas Lozano, Esteban-
dc.contributor.authorGuo, Xiuchao-
dc.date.accessioned2025-07-15T08:32:20Z-
dc.date.available2025-07-15T08:32:20Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/222247-
dc.descriptionTreballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2023-2024, Tutor: Esteban Vegas Lozanoca
dc.description.abstractConvolutional neural networks (CNNs) are fundamental in deep learning, especially in computer vision tasks.They stand out for their ability to extract spatial features from data. However,their complexity has generated the need for explainability in artificial intelligence (XAI), which seeks to interpret and understand their predictions.This work is carried out with the purpose of knowing the applicability of convolutional networks in the classification of Medical images,specifically, endoscopi images already previously collected, and through fine-tunning we will explore architectures that present better performance. Afterwards, we implement the AI explainability techniques,together with the Language model we will assess the process of automating the creation of the medical report through the graphic representations created.ca
dc.format.extent85 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Guo, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Estadística UB-UPC-
dc.subject.classificationXarxes neuronals convolucionalscat
dc.subject.classificationVisió per ordinadorcat
dc.subject.classificationMedicinacat
dc.subject.classificationEstadísticacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherConvolutional neural networkseng
dc.subject.otherComputer visioneng
dc.subject.otherMedicineeng
dc.subject.otherStatisticseng
dc.subject.otherBachelor's theseseng
dc.titleAdvances in Diagnostic Imaging: Integrating Explainable AI to Optimize Convolutional Networksca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Estadística UB-UPC

Files in This Item:
File Description SizeFormat 
TFG-EST_Guo.pdf14.92 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons