Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/222247
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Vegas Lozano, Esteban | - |
dc.contributor.author | Guo, Xiuchao | - |
dc.date.accessioned | 2025-07-15T08:32:20Z | - |
dc.date.available | 2025-07-15T08:32:20Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://hdl.handle.net/2445/222247 | - |
dc.description | Treballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2023-2024, Tutor: Esteban Vegas Lozano | ca |
dc.description.abstract | Convolutional neural networks (CNNs) are fundamental in deep learning, especially in computer vision tasks.They stand out for their ability to extract spatial features from data. However,their complexity has generated the need for explainability in artificial intelligence (XAI), which seeks to interpret and understand their predictions.This work is carried out with the purpose of knowing the applicability of convolutional networks in the classification of Medical images,specifically, endoscopi images already previously collected, and through fine-tunning we will explore architectures that present better performance. Afterwards, we implement the AI explainability techniques,together with the Language model we will assess the process of automating the creation of the medical report through the graphic representations created. | ca |
dc.format.extent | 85 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Guo, 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Estadística UB-UPC | - |
dc.subject.classification | Xarxes neuronals convolucionals | cat |
dc.subject.classification | Visió per ordinador | cat |
dc.subject.classification | Medicina | cat |
dc.subject.classification | Estadística | cat |
dc.subject.classification | Treballs de fi de grau | cat |
dc.subject.other | Convolutional neural networks | eng |
dc.subject.other | Computer vision | eng |
dc.subject.other | Medicine | eng |
dc.subject.other | Statistics | eng |
dc.subject.other | Bachelor's theses | eng |
dc.title | Advances in Diagnostic Imaging: Integrating Explainable AI to Optimize Convolutional Networks | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Estadística UB-UPC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFG-EST_Guo.pdf | 14.92 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License