Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222255
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorReverter Comes, Ferran-
dc.contributor.authorLi, Shengnan-
dc.date.accessioned2025-07-15T10:19:37Z-
dc.date.available2025-07-15T10:19:37Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/222255-
dc.descriptionTreballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2023-2024, Tutor: Ferran Reverter Comesca
dc.description.abstractThis study explores using Convolutional Neural Networks (CNN) to predict microsatellite instability (MSI) and stability (MSS) from histology images in gastrointestinal cancer. A deep learning model was developed with Keras and TensorFlow in R, applying advanced techniques to histology images. The results show that deep CNN architectures effectively predict MSI and MSS, providing clinicians with a reliable tool to identify the microsatellite stability of tumor tissues.ca
dc.format.extent83 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Li, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Estadística UB-UPC-
dc.subject.classificationXarxes neuronals convolucionalscat
dc.subject.classificationAprenentatge profundcat
dc.subject.classificationMedicinacat
dc.subject.classificationEstadísticacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherConvolutional neural networkseng
dc.subject.otherDeep learning (Machine learning)eng
dc.subject.otherMedicineeng
dc.subject.otherStatisticseng
dc.subject.otherBachelor's theseseng
dc.titleClassification of medical images with convolutional networksca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Estadística UB-UPC

Files in This Item:
File Description SizeFormat 
TFG-EST_Li.pdf7.56 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons