Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222255
Title: Classification of medical images with convolutional networks
Author: Li, Shengnan
Director/Tutor: Reverter Comes, Ferran
Keywords: Xarxes neuronals convolucionals
Aprenentatge profund
Medicina
Estadística
Treballs de fi de grau
Convolutional neural networks
Deep learning (Machine learning)
Medicine
Statistics
Bachelor's theses
Issue Date: 2024
Abstract: This study explores using Convolutional Neural Networks (CNN) to predict microsatellite instability (MSI) and stability (MSS) from histology images in gastrointestinal cancer. A deep learning model was developed with Keras and TensorFlow in R, applying advanced techniques to histology images. The results show that deep CNN architectures effectively predict MSI and MSS, providing clinicians with a reliable tool to identify the microsatellite stability of tumor tissues.
Note: Treballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2023-2024, Tutor: Ferran Reverter Comes
URI: https://hdl.handle.net/2445/222255
Appears in Collections:Treballs Finals de Grau (TFG) - Estadística UB-UPC

Files in This Item:
File Description SizeFormat 
TFG-EST_Li.pdf7.56 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons