Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222361
Title: An Introduction to complex analysis in several variables: Riemann mapping and Bergman spaces
Author: Vilaseca Vinadé, Guillem
Director/Tutor: Marzo Sánchez, Jordi
Keywords: Funcions de diverses variables complexes
Nuclis de Bergman
Teoria geomètrica de funcions
Funcions holomorfes
Treballs de fi de grau
Functions of several complex variables
Bergman kernel functions
Geometric function theory
Holomorphic functions
Bachelor's theses
Issue Date: 15-Jan-2025
Abstract: The main goal of this work is to give an introduction of the fundamental concepts in complex analysis in several variables. It starts by introducing holomorphic functions of several complex variables, their representation via power series, and fundamental results like the Cauchy integral formula. Then it follows by the Riemann mapping theorem, a cornerstone result that guarantees the existence of conformal mappings between simply connected domains and the unit disc in $\mathbb{C}$. We show also that the Riemann mapping theorem cannot be extended to $\mathbb{C}^n$. Finally, the last part of the report delves into Bergman spaces, studying their kernels and their connection to the Riemann Mapping Theorem.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Jordi Marzo Sánchez
URI: https://hdl.handle.net/2445/222361
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_Vilaseca_Vinad_Guillem.pdfMemòria538.87 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons