Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222370
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJuliá-Díaz, Bruno-
dc.contributor.advisorGarcia Saez, Artur-
dc.contributor.advisorCarignano, Stefano-
dc.contributor.authorBenarroch Jedlicki, Jack-
dc.date.accessioned2025-07-18T10:38:13Z-
dc.date.available2025-07-18T10:38:13Z-
dc.date.issued2025-01-
dc.identifier.urihttps://hdl.handle.net/2445/222370-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutors: Bruno Julià-Díaz, Artur García-Saez, Stefano Carignanoca
dc.description.abstractQuantum algorithms have the potential to accelerate computation and reduce memory requirements on advanced quantum computers. However, current hardware limitations hinder their application to complex problems. In this work, we investigate a promising approach that bypasses the need for quantum hardware by leveraging tensor networks to simulate quantum algorithms on classical computers. We assess the performance of quantum-inspired simulators relative to classical methods in terms of memory, runtime, and accuracy. Our results demonstrate that quantum-inspired simulators can surpass their classical counterparts in accuracy while using less than half the memory. Additionally, we show that operators based on higher-precision approximations can reduce errors in quantum-inspired simulations without compromising memory requirements. Finally, we explore the capability of quantum-inspired simulators to address memory-intensive problems beyond the reach of conventional algorithms.ca
dc.format.extent7 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Benarroch, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.classificationEquacions diferencials parcialscat
dc.subject.classificationXarxes tensorialscat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherPartial differential equationseng
dc.subject.otherTensor Networkseng
dc.subject.otherBachelor's theseseng
dc.titleTensor Networks for Quantum-Inspired Simulationseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
TFG-Benarroch-Jedlicki-Jack.pdf761.58 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons