Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/222468
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Ocio Moliner, Mikel | - |
dc.contributor.advisor | Soriano i Fradera, Jordi | - |
dc.contributor.author | Canals Martí, Eulàlia | - |
dc.date.accessioned | 2025-07-22T10:05:47Z | - |
dc.date.available | 2025-07-22T10:05:47Z | - |
dc.date.issued | 2025-06 | - |
dc.identifier.uri | https://hdl.handle.net/2445/222468 | - |
dc.description | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutors: Mikel Ocio Moliner, Jordi Soriano Fradera | ca |
dc.description.abstract | Neuronal networks are hypothesized to operate near a critical state—an intermediate regime between order and disorder—where information processing is optimized. This thesis investigates criticality in neuronal systems using a threefold approach: (i) a branching process model to reproduce avalanche dynamics with power-law statistics; (ii) simulations of spiking activity in spatially embedded networks using Random Geometric Graphs (RGGs) together with the Izhikevich dynamic neuronal model, to explore how modular topology promotes critical behavior; and (iii) analysis of electrophysiological recordings from human induced pluripotent stem cell (hiPSC) derived neuronal cultures. Our findings reveal that both simulated and experimental data exhibit scale-invariant avalanche statistics and satisfy universal exponent relations characteristic of critical systems. Observed deviations from mean-field theoretical predictions are attributed to spatial constraints and connectivity density. These results support the hypothesis that criticality emerges robustly in structurally diverse neuronal architectures while preserving core dynamical features | ca |
dc.format.extent | 7 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Canals, 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject.classification | Xarxes neuronals (Informàtica) | cat |
dc.subject.classification | Processos de ramificació | cat |
dc.subject.classification | Treballs de fi de grau | cat |
dc.subject.other | Neural networks (Computer science) | eng |
dc.subject.other | Branching processes | eng |
dc.subject.other | Bachelor's theses | eng |
dc.title | Criticality in in silico and in vitro neuronal networks | eng |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFG_Canals_Eulalia.pdf | 3.06 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License