Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/222640
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Diosdado, Jorge | - |
dc.contributor.author | Gilabert Roca, Pere | - |
dc.contributor.author | Seguí Mesquida, Santi | - |
dc.contributor.author | Borrego, Henar | - |
dc.date.accessioned | 2025-07-29T07:28:07Z | - |
dc.date.available | 2025-07-29T07:28:07Z | - |
dc.date.issued | 2024-10-05 | - |
dc.identifier.issn | 2052-4463 | - |
dc.identifier.uri | https://hdl.handle.net/2445/222640 | - |
dc.description.abstract | Accurate detection and classification of lung malignancies are crucial for early diagnosis, treatment planning, and patient prognosis. Conventional histopathological analysis is time-consuming, limiting its clinical applicability. To address this, we present a dataset of 691 high-resolution (1200 × 1600 pixels) histopathological lung images, covering adenocarcinomas, squamous cell carcinomas, and normal tissues from 45 patients. These images are subdivided into three differentiation levels for both pathological types: well, moderately, and poorly differentiated, resulting in seven classes for classification. The dataset includes images at 20x and 40x magnification, reflecting real clinical diversity. We evaluated image classification using deep neural network and multiple instance learning approaches. Each method was used to classify images at 20x and 40x magnification into three superclasses. We achieved accuracies between 81% and 92%, depending on the method and resolution, demonstrating the dataset’s utility. | - |
dc.format.extent | 7 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41597-024-03944-3 | - |
dc.relation.ispartof | Scientific Data, 2024, vol. 11 | - |
dc.relation.uri | https://doi.org/https://doi.org/10.1038/s41597-024-03944-3 | - |
dc.rights | cc-by (c) Jorge Diosdado et al., 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Diagnòstic per la imatge | - |
dc.subject.classification | Malalties del pulmó | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Diagnostic imaging | - |
dc.subject.other | Pulmonary diseases | - |
dc.title | LungHist700: A dataset of histological images for deep learning in pulmonary pathology | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 750789 | - |
dc.date.updated | 2025-07-29T07:28:07Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
867922.pdf | 2.23 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License