Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222680
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKulikov, Aleksei-
dc.contributor.authorNicola, Fabio-
dc.contributor.authorOrtega Cerdà, Joaquim-
dc.contributor.authorTilli, Paolo-
dc.date.accessioned2025-07-30T08:29:22Z-
dc.date.available2025-07-30T08:29:22Z-
dc.date.issued2025-07-07-
dc.identifier.issn0001-8708-
dc.identifier.urihttps://hdl.handle.net/2445/222680-
dc.description.abstractWe provide a sharp monotonicity theorem about the distribution of subharmonic functions on manifolds, which can be regarded as a new, measure theoretic form of the uncertainty principle. As an illustration of the scope of this result, we deduce contractivity estimates for analytic functions on the Riemann sphere, the complex plane and the Poincaré disc, with a complete description of the extremal functions, hence providing a unified and illuminating perspective of a number of results and conjectures on this subject, in particular on the Wehrl entropy conjecture by Lieb and Solovej. In this connection, we completely prove that conjecture for $SU$(2), by showing that the corresponding extremals are only the coherent states. Also, we show that the above (global) estimates admit a local counterpart and in all cases we characterize also the extremal subsets, among those of fixed assigned measure.-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.aim.2025.110423-
dc.relation.ispartofAdvances in Mathematics, 2025, vol. 479-
dc.relation.urihttps://doi.org/10.1016/j.aim.2025.110423-
dc.rightscc-by (c) Aleksei Kulikov et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationTeoria quàntica-
dc.subject.classificationOptimització matemàtica-
dc.subject.classificationTeoria geomètrica de funcions-
dc.subject.otherQuantum theory-
dc.subject.otherMathematical optimization-
dc.subject.otherGeometric function theory-
dc.titleA monotonicity theorem for subharmonic functions on manifolds-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec758911-
dc.date.updated2025-07-30T08:29:22Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
895102.pdf482.72 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons