Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222883
Title: MoxC heterostructures as efficient co-catalysts in robust MoxC/g-C3N4 nanocomposites for photocatalytic H2 production from ethanol
Author: Wang, Yan
Pajares, Arturo
Serafin, Jarosław
Alcobé i Ollé, Xavier
Güell Vilà, Frank
Homs Martí, Narcís
Ramírez de la Piscina, Pilar
Keywords: Difracció
Alcohol
Fotocatàlisi
Diffraction
Alcohol
Photocatalysis
Issue Date: 16-Feb-2024
Publisher: American Chemical Society
Abstract: In this work, we studied new materials free of noble metals that are active in photocatalytic H2 generation from ethanol aqueous solutions (EtOHaq), which can be obtained from biomass. MoxC/g-C3N4 photocatalysts containing hexagonal (hcp) Mo2C and/or cubic (fcc) MoC nanoparticles on g-C3N4 nanosheets were prepared, characterized, and evaluated for photocatalytic hydrogen production from EtOHaq (25% v/v). Tailored MoxC/g-C3N4 nanocomposites with MoxC crystallite sizes in the 4–37 nm range were prepared by treatment with ultrasound of dispersions containing MoxC and g-C3N4 nanosheets, formerly synthesized. The characterization of the resulting nanocomposites, MoxC/g-C3N4, by different techniques, including photoelectrochemical measurements, allowed us to relate the photocatalytic performance of materials with the characteristics of the MoxC phase integrated onto g-C3N4. The samples containing smaller hcp Mo2C crystallites showed better photocatalytic performance. The most performant nanocomposite contained nanoparticles of both hcp Mo2C and fcc MoC and produced 27.9 mmol H2 g–1 Mo; this sample showed the lowest recombination of photogenerated charges, the highest photocurrent response, and the lowest electron transfer resistance, which can be related to the presence of MoC-Mo2C heterojunctions. Moreover, this material allows for easy reusability. This work provides new insights for future research on noble-metal-free g-C3N4-based photocatalysts.
Note: Reproducció del document publicat a: https://doi.org/10.1021/acssuschemeng.3c06261
It is part of: Acs Sustainable Chemistry & Engineering, 2024, vol. 12, p. 4365-4374
URI: https://hdl.handle.net/2445/222883
Related resource: https://doi.org/10.1021/acssuschemeng.3c06261
ISSN: 2168-0485
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
844107.pdf7.46 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons