Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222926
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2025-09-03T11:35:36Z-
dc.date.available2025-09-03T11:35:36Z-
dc.date.issued2025-06-01-
dc.identifier.issn0217-5908-
dc.identifier.urihttps://hdl.handle.net/2445/222926-
dc.description.abstractA sovereign bond market offers a wide range of opportunities for public and private sector financing and has drawn the interest of both scholars and professionals as they are the main instrument of most fixed-income asset markets. Numerous works have studied the behavior of sovereign bonds at the microeconomic level, given that a domestic securities market can enhance overall financial stability and improve financial market intermediation. Nevertheless, they do not deepen methods that identify liquidity risks in bond markets. This study introduces a new model for predicting unexpected situations of speculative attacks in the government bond market, applying methods of deep learning neural networks, which proactively identify and quantify financial market risks. Our approach has a strong impact in anticipating possible speculative actions against the sovereign bond market and liquidity risks, so the aspect of the potential effect on the systemic risk is of high importance.-
dc.format.extent35 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherWorld Scientific Publishing-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1142/S0217590822480034-
dc.relation.ispartofThe Singapore Economic Review, 2022, vol. 70, num.4, p. 1069-1104-
dc.relation.urihttps://doi.org/10.1142/S0217590822480034-
dc.rights(c) World Scientific Publishing, 2022-
dc.sourceArticles publicats en revistes (Empresa)-
dc.subject.classificationBons-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationEconomia de mercat-
dc.subject.classificationFons especulatius-
dc.subject.classificationDeute públic-
dc.subject.otherBonds-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherMarket economy-
dc.subject.otherHedge funds-
dc.subject.otherPublic debt-
dc.titleDeep Neural Networks Methods for Estimating Market Microstructure and Speculative Attacks Models: The case of Government Bond Market-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec725892-
dc.date.updated2025-09-03T11:35:36Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Empresa)

Files in This Item:
File Description SizeFormat 
252930.pdf233.57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.