Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223064
Title: Towards collaborative data science in mental health research: The ECNP neuroimaging network accessible data repository
Author: Khuntia, Adyasha
Buciuman, Madalina-Octavia
Fanning, John
Stolicyn, Aleks
Vetter, Clara
Armio, Reetta-Liina
From, Tiina
Goffi, Federica
Hahn, Lisa
Kaufmann, Tobias
Laurikainen, Heikki
Maggioni, Eleonora
Martínez Zalacaín, Ignacio
Ruef, Anne
Dong, Mark Sen
Schwarz, Emanuel
Squarcina, Letizia
Andreassen, Ole
Bellani, Marcella
Brambilla, Paolo
Haren, Neeltje van
Hietala, Jarmo
Lawrie, Stephen M.
Soriano Mas, Carles
Whalley, Heather
Taquet, Maxime
Meisenzahl, Eva
Falkai, Peter
Wiegand, Ariane
Koutsouleris, Nikolaos
Keywords: Imatges per ressonància magnètica
Cultura participativa
Salut mental
Dades de recerca
Ciència
Magnetic resonance imaging
Participatory culture
Mental health
Research data
Science
Issue Date: 1-Jan-2025
Publisher: Elsevier B.V.
Abstract: The current biologically uninformed psychiatric taxonomy complicates optimal diagnosis and treatment. Neuroimaging-based machine learning methods hold promise for tackling these issues, but large-scale, representative cohorts are required for building robust and generalizable models. The European College of Neuropsychopharmacology Neuroimaging Network Accessible Data Repository (ECNP-NNADR) addresses this need by collating multi-site, multi-modal, multi-diagnosis datasets that enable collaborative research. The newly established ECNP-NNADR includes 4829 participants across 21 cohorts and 11 distinct psychiatric diagnoses, available via the Virtual Pooling and Analysis of Research data (ViPAR) software. The repository includes demographic and clinical information, including diagnosis and questionnaires evaluating psychiatric symptomatology, as well as multi-atlas grey matter volume regions of interest (ROI). To illustrate the opportunities offered by the repository, two proof-of-concept analyses were performed: (1) multivariate classification of 498 patients with schizophrenia (SZ) and 498 matched healthy control (HC) individuals, and (2) normative age prediction using 1170 HC individuals with subsequent application of this model to study abnormal brain maturational processes in patients with SZ. In the SZ classification task, we observed varying balanced accuracies, reaching a maximum of 71.13% across sites and atlases. The normative-age model demonstrated a mean absolute error (MAE) of 6.95 years [coefficient of determination (R2) = 0.77, P < .001] across sites and atlases. The model demonstrated robust generalization on a separate HC left-out sample achieving a MAE of 7.16 years [R2 = 0.74,P < .001]. When applied to the SZ group, the model exhibited a MAE of 7.79 years [R2 = 0.79, P < .001], with patients displaying accelerated brain-aging with a brain age gap (BrainAGE) of 4.49 (8.90) years. Conclusively, this novel multi-site, multi-modal, transdiagnostic data repository offers unique opportunities for systematically tackling existing challenges around the generalizability and validity of imaging-based machine learning applications for psychiatry.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.nsa.2024.105407
It is part of: Neuroscience Applied, 2025, vol. 4, 105407
URI: https://hdl.handle.net/2445/223064
Related resource: https://doi.org/10.1016/j.nsa.2024.105407
Appears in Collections:Articles publicats en revistes (Psicologia Social i Psicologia Quantitativa)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
883332.pdf2.23 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons