Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223100
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Maluenda Niubó, David | - |
dc.contributor.author | Lorenzana Santuyo, Joshua | - |
dc.date.accessioned | 2025-09-10T13:30:32Z | - |
dc.date.available | 2025-09-10T13:30:32Z | - |
dc.date.issued | 2025-01 | - |
dc.identifier.uri | https://hdl.handle.net/2445/223100 | - |
dc.description | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: David Maluenda | ca |
dc.description.abstract | Cryo-electron microscopy is an imaging technique used for 3D reconstruction of biomolecules, enabling researchers to study their structures. However, due to low signal-to-noise ratios in captured images, 2D classification is a critical preprocessing step. This thesis explores the application of a deep learning approach, specifically a similarity network, to address this challenge. A Siamese model, trained with a Triplet Loss function, is used to differentiate between similar and dissimilar images. The model was trained on a dataset with known ground truth and tested on two types of unseen data: a similar dataset with ground truth and a different dataset without the ground truth. This study demonstrates the potential of deep learning to complement traditional 2D classification methods in cryo-EM. | ca |
dc.format.extent | 7 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Lorenzana, 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Física | - |
dc.subject.classification | Aprenentatge profund | cat |
dc.subject.classification | Xarxes neuronals | cat |
dc.subject.classification | Treballs de fi de grau | cat |
dc.subject.other | Deep learning (Machine learning) | eng |
dc.subject.other | Neural networks | eng |
dc.subject.other | Bachelor's theses | eng |
dc.title | Deep Learning Tools for image classification in Cryo-electron microscopy | eng |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFG-Lorenzana-Santuyo-Joshua.pdf | 3.04 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License