Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223116
Title: Brain Connectomes Navigability in Hyperbolic Space
Author: Martínez Miró, Víctor
Director/Tutor: Serrano Moral, Ma. Ángeles (María Ángeles)
Keywords: Connectoma
Geometria hiperbòlica
Treballs de fi de grau
Connectome
Hyperbolic geometry
Bachelor's theses
Issue Date: Jun-2025
Abstract: This study evaluates navigability in brain connectomes embedded in 2D hyperbolic geometry using greedy routing—a decentralized navigation protocol. Applying this framework to four empirical connectomes—spanning species, scales, and node types—we assess navigability via success rate, topological stretch, and two geometrical stretch variants. We introduce a novel geometrical stretch definition based on accumulated hyperbolic distance along minimal-cost paths, demonstrating improved consistency with topological stretch and potentially better reflection of the underlying geometry. Our results confirm hyperbolic geometry’s effectiveness as a latent space for efficient brain information transmission, providing further perspective on network science, complex systems, and brain connectivity.
Note: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutora: M. Ángeles Serrano Moral
URI: https://hdl.handle.net/2445/223116
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
MARTÍNEZ MIRÓ VÍCTOR-R.pdf435.13 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons