Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223117
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPalassini, Matteo-
dc.contributor.authorMartínez Ortega, Pol-
dc.date.accessioned2025-09-12T12:09:59Z-
dc.date.available2025-09-12T12:09:59Z-
dc.date.issued2025-06-
dc.identifier.urihttps://hdl.handle.net/2445/223117-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Matteo Palassinica
dc.description.abstractRandom matrix theory provides a powerful framework for understanding universal features of complex systems, especially in the large-size limit. In this work, we study the spectral density of Wishart-Laguerre random matrices using the Edwards-Jones formula. We reinterpret the averaged quantity in the Edwards-Jones formula as the partition function of a disordered system and apply tools from statistical physics. Our results illustrate how techniques from statistical physics of disordered systems naturally extend to random matrix theory, offering physical insight and analytical methods for exploring spectral properties in complex systemsca
dc.format.extent6 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Martínez, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física-
dc.subject.classificationSistemes complexoscat
dc.subject.classificationMatrius aleatòriescat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherComplex systemseng
dc.subject.otherRandom matriceseng
dc.subject.otherBachelor's theseseng
dc.titleSpectral density of Wishart matrices and the replica methodeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
MARTÍNEZ ORTEGA POL-R.pdf307.65 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons