Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223132
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Rios Huguet, Arnau | - |
dc.contributor.author | Morales De León, David | - |
dc.date.accessioned | 2025-09-12T13:32:06Z | - |
dc.date.available | 2025-09-12T13:32:06Z | - |
dc.date.issued | 2025-01 | - |
dc.identifier.uri | https://hdl.handle.net/2445/223132 | - |
dc.description | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Arnau Rios Huguet | ca |
dc.description.abstract | The precise determination of nuclear masses is essential for understanding atomic nuclei and for applications in astrophysics and nuclear energy. Traditional models like the liquid drop model, with a root mean squared error of σ = 3.94 MeV, fail to meet the accuracy of 100 keV required for nuclear astrophysics research. This work introduces a novel approach by implementing a convolutional neural network (CNN) and leveraging the spatial structure of the nuclide chart. Two models, I3 and I4, are trained and tested on the AME2016 database, achieving values of σ = 0.67 MeV and σ = 0.49 MeV, respectively. Extrapolating to the new nuclei of the AME2020 database, they hold values of σ = 0.64 MeV and σ = 0.57 MeV, demonstrating strong generalization capabilities and proving that CNNs constitute a powerful tool for accurate nuclear mass predictions | ca |
dc.format.extent | 6 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Morales, 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Física | - |
dc.subject.classification | Xarxes neuronals convolucionals | cat |
dc.subject.classification | Model de la gota líquida | cat |
dc.subject.classification | Treballs de fi de grau | cat |
dc.subject.other | Convolutional neural networks | eng |
dc.subject.other | Liquid drop model | eng |
dc.subject.other | Bachelor's theses | eng |
dc.title | Nuclear mass predictions based on convolutional neural networks | eng |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFG-Morales-DeLeón-David.pdf | 2.96 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License