Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223132
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRios Huguet, Arnau-
dc.contributor.authorMorales De León, David-
dc.date.accessioned2025-09-12T13:32:06Z-
dc.date.available2025-09-12T13:32:06Z-
dc.date.issued2025-01-
dc.identifier.urihttps://hdl.handle.net/2445/223132-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Arnau Rios Huguetca
dc.description.abstractThe precise determination of nuclear masses is essential for understanding atomic nuclei and for applications in astrophysics and nuclear energy. Traditional models like the liquid drop model, with a root mean squared error of σ = 3.94 MeV, fail to meet the accuracy of 100 keV required for nuclear astrophysics research. This work introduces a novel approach by implementing a convolutional neural network (CNN) and leveraging the spatial structure of the nuclide chart. Two models, I3 and I4, are trained and tested on the AME2016 database, achieving values of σ = 0.67 MeV and σ = 0.49 MeV, respectively. Extrapolating to the new nuclei of the AME2020 database, they hold values of σ = 0.64 MeV and σ = 0.57 MeV, demonstrating strong generalization capabilities and proving that CNNs constitute a powerful tool for accurate nuclear mass predictionsca
dc.format.extent6 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Morales, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física-
dc.subject.classificationXarxes neuronals convolucionalscat
dc.subject.classificationModel de la gota líquidacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherConvolutional neural networkseng
dc.subject.otherLiquid drop modeleng
dc.subject.otherBachelor's theseseng
dc.titleNuclear mass predictions based on convolutional neural networkseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
TFG-Morales-DeLeón-David.pdf2.96 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons