Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223156
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRadeva, Petia-
dc.contributor.authorDiéguez Vilà, Joel-
dc.date.accessioned2025-09-15T09:49:38Z-
dc.date.available2025-09-15T09:49:38Z-
dc.date.issued2025-06-30-
dc.identifier.urihttps://hdl.handle.net/2445/223156-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Petia Radeva i Javier Ródenas Cumplidoca
dc.description.abstractRecently, Few-Shot Learning has gained significant momentum in the machine learning community. This field focuses on enabling models to learn from extremely limited data, often just a handful of examples per class. Unlike traditional deep learning, which relies on large-scale datasets, few-shot learning requires novel, efficient strategies that challenge conventional assumptions and fundamentally shift the paradigm toward "learning to learn", for faster, more adaptable models. In this work, we explore the most common approaches to few-shot learning and introduce our own method. Building upon the SemFew framework, we propose a metric-based meta-learning approach using Prototypical Networks, enhanced with a semantic support module. This module uses class descriptions from WordNet, refined through a Large Language Model, to provide high-quality semantic embeddings that guide the model in understanding novel classes. Our proposed model is remarkably simple yet highly effective, achieving competitive performance with state-of-the-art methods, specially in 1-shot scenarios (only one example per class). We validate our method across three widely used few-shot classification benchmarks: CIFAR-FS, FC100, and MiniImageNet. The results consistently demonstrate the effectiveness of incorporating semantic guidance to face unseen classes. Further-more, we present an in-depth study of modern LLMs, evaluating their performance across different prompting strategies, and investigating multiple sources of data for generating the best semantic representations. This analysis offers valuable insights into how semantic guidance can be optimized for few-shot learning. Overall, this work demonstrates the power of combining simple metric-based learning with rich semantic embeddings, offering a practical and competitive alternative to more complex architectures while encouraging new directions for future research in few-shot learning. The source code is available at: https://github.com/jdieguvi15/TFM-SemFew.ca
dc.format.extent62 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Joel Díeguez Vilà, 2025-
dc.rightscodi: GPL (c) Joel Díeguez Vilà, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationTractament del llenguatge natural (Informàtica)-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherNatural language processing (Computer science)-
dc.subject.otherMachine learning-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherMaster's thesis-
dc.titleEnhancing Few-Shot Learning with Large Language Modelsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
code.zipCodi font9.15 MBzipView/Open
TFM_Diéguez_Vilà_Joel.pdfMemòria16.04 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons