Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223171
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBagaria, Joan-
dc.contributor.authorCobo Rodríguez, Germán-
dc.date.accessioned2025-09-15T16:49:25Z-
dc.date.available2025-09-15T16:49:25Z-
dc.date.issued2025-09-
dc.identifier.urihttps://hdl.handle.net/2445/223171-
dc.descriptionTreballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2024-2025. Tutor: Joan Bagaria Pigrauca
dc.description.abstractIn the theory of large cardinals, the Structural Reflection research program has the ultimate goal of providing a uniform way of characterizing any large cardinal notion in terms of structural reflection principles. In the present work, we study and provide such a characterization for Erdős, Ramsey, Rowbottom and Jónsson cardinals, which are large cardinal notions commonly defined in terms of partition properties and contained in the region below the first measurable cardinal. We introduce three new families of structural reflection principles: the invariant structural reflection principles, which characterize Erdős and Ramsey cardinals; the two-cardinal structural reflection principles, which characterize Rowbottom cardinals; and the proper structural reflection principles, which characterize Jónsson cardinals. Finally, we show how a particular generalization of a proper structural reflection principle yields a characterization of exacting cardinals.ca
dc.format.extent75 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) Cobo Rodríguez, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Pure and Applied Logic / Lògica Pura i aplicada-
dc.subject.classificationLògica matemàtica-
dc.subject.classificationTeoria axiomàtica de conjunts-
dc.subject.classificationNombres cardinals-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherMathematical logic-
dc.subject.otherAxiomatic set theory-
dc.subject.otherCardinal numbers-
dc.subject.otherMaster's thesis-
dc.titleStructural reflection for large cardinal partition propertiesca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Pure and Applied Logic / Lògica Pura i aplicada

Files in This Item:
File Description SizeFormat 
TFM_Cobo Rodríguez_Germán.pdf577.8 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons