Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223177
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMarinelli, Dimitri-
dc.contributor.authorGarcía Romo, Alba-
dc.date.accessioned2025-09-16T09:19:54Z-
dc.date.available2025-09-16T09:19:54Z-
dc.date.issued2025-06-30-
dc.identifier.urihttps://hdl.handle.net/2445/223177-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Dimitri Marinelli i Albert Díaz Guileraca
dc.description.abstractThis thesis applies Uniform Manifold Approximation and Projection (UMAP) to analyse and visualize research works from the OpenAlex database. By using various embedding methods (including transformer-based models and hierarchical topic encodings) the study demonstrates that UMAP projections can effectively capture meaningful structures in the data, revealing relationships among research areas and institutions. Results show that capturing complex topic relationships across multiple domains is a challenging task. Nevertheless, the visualizations reveal significant thematic clusters and author groupings that align with our data analysis. Quan- titative evaluation using clustering metrics, such as the silhouette score, confirms the agreement between visual patterns and semantic embeddings. We also show the impact of UMAP hyperparameters on balancing local and global data structure preservation, which influences visualization clarity and interpretability. The resulting interactive, zoomable visual maps provide researchers with a powerful tool to explore and understand the organization of scientific knowledge.ca
dc.format.extent54 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Alba García Romo, 2025-
dc.rightscodi: GPL (c) Alba García Romo, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationVisualització de la informació-
dc.subject.classificationLiteratura científica-
dc.subject.classificationAlgorismes computacionals-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherInformation visualization-
dc.subject.otherScientific literature-
dc.subject.otherComputer algorithms-
dc.subject.otherMaster's thesis-
dc.titleExploring Academic Relationships with UMAP: Dimensionality Reduction and Visualization of Topics and Authors in OpenAlexca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
Delivery-Exploring-Academic-Relationships-with-UMAP-and-OpenAlex.zipCodi font39.25 MBzipView/Open
TFM_García_Romo_Alba.pdfMemòria11.12 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons