Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223186
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBoguñá, Marián-
dc.contributor.authorOlivella Francos, Oscar-
dc.date.accessioned2025-09-16T12:58:29Z-
dc.date.available2025-09-16T12:58:29Z-
dc.date.issued2025-06-
dc.identifier.urihttps://hdl.handle.net/2445/223186-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Marián Boguñá Espinalca
dc.description.abstractWe introduce a method to find a low sparsity partition and an estimate h of the Cheeger constant of complex networks by exploiting the geometric properties that many networks exhibit. We generate synthetic networks from the S1/H2 model and obtain estimates for h that are between one and three orders of magnitude lower than the average sparsity over a large number of random partitions, ⟨s⟩, and decrease with network size. We then select seven real networks, infer an embedding into the hyperbolic disk and obtain estimates for h that are all lower than ⟨s⟩, but only three of them are at least one order of magnitude below. In conclusion, the geometric method provides better results than random in all cases and, if the network exhibits an underlying metric space, it provides estimates that are orders of magnitude lower than random and decrease with network size.ca
dc.format.extent7 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Olivella, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física-
dc.subject.classificationXarxes complexescat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherComplex networkseng
dc.subject.otherBachelor's theseseng
dc.titleOptimal partition of geometric complex networkseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
OLIVELLA FRANCOS OSCAR-R.pdf557.29 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons