Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223226
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHeightman, Timothy-
dc.contributor.advisorJiang, Edward-
dc.contributor.authorAseguinolaza Gallo, Roman-
dc.date.accessioned2025-09-17T13:32:49Z-
dc.date.available2025-09-17T13:32:49Z-
dc.date.issued2025-08-
dc.identifier.urihttps://hdl.handle.net/2445/223226-
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2024-2025. Tutors: Timothy Heightman, Edward Jiangca
dc.description.abstractLearning open quantum many-body dynamics is challenging: full Liouvillian models grow exponentially with system size, and dissipation and dephasing force us to follow mixed states from noisy, limited data. These factors make routine characterisation and control difficult, so we need methods that are data-efficient, scalable, and easy to interpret. We present an interpretable, robust framework for learning Lindbladian dynamics from minimal, hardwarefriendly data. The method pairs a physics-first CPTP Lindblad model with a small Neural Differential Equation (NDE) residual and uses a two-stage curriculum (neural warm-up, then analytic-only refinement) to reliably recover coherent and dissipative parameters on challenging 1D benchmarks. There are two ways in which robustness emerges in Lindladian learning: modest physical dissipation that smoothens loss landscapes via steady-state attraction, and the NDE residual that resolves remaining nonconvexity when paired with an optimizer reset. A transient infidelity metric shows short-time power-law error and small steady-state plateaus. Extending beyond CPTP to a stochastic dissipative qubit shows failures in noise-induced or deep PT-unbroken phases that are information-limited, not optimization-limitedca
dc.format.extent22 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Aseguinolaza, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology-
dc.subject.classificationEquacions diferencials ordinàries-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherOrdinary differential equations-
dc.subject.otherMachine learning-
dc.subject.otherMaster's thesis-
dc.titleSolving the Quantum Many-Body Lindbladian Learning Problem With Neural Differential Equationseng
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology

Files in This Item:
File Description SizeFormat 
ASEGUINOLAZA GALLO ROMAN.pdf4.42 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons