Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223230
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Rios Huguet, Arnau | - |
dc.contributor.advisor | Rozalén Sarmiento, Javier | - |
dc.contributor.author | Carrasco Arango, MIguel | - |
dc.date.accessioned | 2025-09-17T14:05:23Z | - |
dc.date.available | 2025-09-17T14:05:23Z | - |
dc.date.issued | 2025-09 | - |
dc.identifier.uri | https://hdl.handle.net/2445/223230 | - |
dc.description | Màster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2024-2025. Tutors: Arnau Rios Huguet, Javier Rozalén Sarmiento | ca |
dc.description.abstract | In this work, we explore the use of Neural Quantum States to approximate the ground-state wavefunctions of fully polarized fermionic systems confined in a D-dimensional harmonic trap. Building on the architecture introduced in [1], we generalize the input representation and network structure to handle arbitrary spatial dimensionality, extending the applicability of the method beyond one-dimensional systems. The antisymmetric nature of the fermionic wavefunction is preserved through the use of equivariant neural layers, and a generalized Slater determinant is constructed from learned single-particle orbitals modulated by a Gaussian envelope. Training is carried out in two stages: first, a supervised pretraining phase based on analytical solutions of the non-interacting system, which is then followed by variational Monte Carlo optimization of the network parameters using the energy as the loss function. We validate our approach on non-interacting systems with up to 4 particles in 2D and 3 particles in 3D, where analytical solutions are available for benchmarking. Results show excellent agreement in terms of mean energy, one-body density, and the one-body density matrix, with observed spatial symmetries and degeneracy patterns matching theoretical expectations. While the training protocol has been generalized to incorporate finite-range interactions, this study focuses on non-interacting systems to establish a solid baseline. The framework developed here provides a flexible and scalable foundation for future exploration of interacting quantum systems in higher dimensions using neural variational methods. | ca |
dc.format.extent | 25 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Carrasco, 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Màster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Xarxes neuronals | - |
dc.subject.classification | Treballs de fi de màster | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Neural networks | - |
dc.subject.other | Master's thesis | - |
dc.title | Neural Quantum States: Fermions on D-Dimensions | eng |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Màster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
CARRASCO ARANGO MIGUEL.pdf | 26.01 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License