Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223230
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRios Huguet, Arnau-
dc.contributor.advisorRozalén Sarmiento, Javier-
dc.contributor.authorCarrasco Arango, MIguel-
dc.date.accessioned2025-09-17T14:05:23Z-
dc.date.available2025-09-17T14:05:23Z-
dc.date.issued2025-09-
dc.identifier.urihttps://hdl.handle.net/2445/223230-
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2024-2025. Tutors: Arnau Rios Huguet, Javier Rozalén Sarmientoca
dc.description.abstractIn this work, we explore the use of Neural Quantum States to approximate the ground-state wavefunctions of fully polarized fermionic systems confined in a D-dimensional harmonic trap. Building on the architecture introduced in [1], we generalize the input representation and network structure to handle arbitrary spatial dimensionality, extending the applicability of the method beyond one-dimensional systems. The antisymmetric nature of the fermionic wavefunction is preserved through the use of equivariant neural layers, and a generalized Slater determinant is constructed from learned single-particle orbitals modulated by a Gaussian envelope. Training is carried out in two stages: first, a supervised pretraining phase based on analytical solutions of the non-interacting system, which is then followed by variational Monte Carlo optimization of the network parameters using the energy as the loss function. We validate our approach on non-interacting systems with up to 4 particles in 2D and 3 particles in 3D, where analytical solutions are available for benchmarking. Results show excellent agreement in terms of mean energy, one-body density, and the one-body density matrix, with observed spatial symmetries and degeneracy patterns matching theoretical expectations. While the training protocol has been generalized to incorporate finite-range interactions, this study focuses on non-interacting systems to establish a solid baseline. The framework developed here provides a flexible and scalable foundation for future exploration of interacting quantum systems in higher dimensions using neural variational methods.ca
dc.format.extent25 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Carrasco, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationXarxes neuronals-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherMachine learning-
dc.subject.otherNeural networks-
dc.subject.otherMaster's thesis-
dc.titleNeural Quantum States: Fermions on D-Dimensionseng
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology

Files in This Item:
File Description SizeFormat 
CARRASCO ARANGO MIGUEL.pdf26.01 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons