Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223312
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNúñez Burcio, Oscar-
dc.contributor.authorNúñez, Nerea-
dc.contributor.authorSaurina, Javier-
dc.date.accessioned2025-09-19T16:35:15Z-
dc.date.available2025-09-19T16:35:15Z-
dc.date.issued2025-08-
dc.identifier.issn2304-8158-
dc.identifier.urihttps://hdl.handle.net/2445/223312-
dc.description.abstractCoffee adulteration is a growing concern in the food industry due to economic and quality implications. This study evaluates a rapid, non-targeted fingerprinting method based on flow injection analysis–mass spectrometry (FIA-MS) for detecting common coffee adulterants. A total of 119 samples were analyzed, including 43 coffee samples and 76 samples of common coffee adulterants (16 chicory, 10 barley, and 50 flour samples). FIA-MS combined with chemometric analysis allowed for the classification of pure and adulterated coffee samples with over 95% accuracy. Compared to LC-MS, the FIA-MS method showed a similar performance while offering significantly faster analysis and lower solvent consumption, making it a practical and sustainable option for high-throughput screening. For PLS regression studies, calibration and prediction errors were consistently below 0.91% and 11.7%, respectively. Furthermore, the methodology was compared with a non-targeted LC-MS approach, showing an excellent performance.-
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.3390/foods14172931-
dc.relation.ispartofFoods, 2025, vol. 14, num.2391-
dc.relation.urihttps://doi.org/https://doi.org/10.3390/foods14172931-
dc.rightscc-by (c) Núñez et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)-
dc.subject.classificationAnàlisi per injecció en flux-
dc.subject.classificationCafè (Beguda)-
dc.subject.classificationQuimiometria-
dc.subject.otherFlow injection analysis-
dc.subject.otherCoffee drink-
dc.subject.otherChemometrics-
dc.titleAn FIA-MS Method for Rapid Coffee Adulteration Detection: A Comparative Study with a Non-Targeted LC-MS Approach-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec760124-
dc.date.updated2025-09-19T16:35:15Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Química i Química Analítica)

Files in This Item:
File Description SizeFormat 
898625.pdf806.46 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons