Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223334
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alonso-Valdesueiro, Javier | - |
dc.contributor.author | Fernández Romero, Luis | - |
dc.contributor.author | Gutiérrez-Gálvez, Agustín | - |
dc.contributor.author | Marco Colás, Santiago | - |
dc.date.accessioned | 2025-09-22T16:34:34Z | - |
dc.date.available | 2025-09-22T16:34:34Z | - |
dc.date.issued | 2025-09-18 | - |
dc.identifier.issn | 1530-437X | - |
dc.identifier.uri | https://hdl.handle.net/2445/223334 | - |
dc.description.abstract | Complementary Split Ring Resonators (CSRRs) have been widely researched as planar sensors, but their use in routine chemical analysis is limited due to dependence on high-end equipment, controlled conditions, and susceptibility to environmental and handling variations. This work introduces a novel approach combining a CSRR sensor with machine learning (ML) to enable reliable quantification of compounds. A low-cost benchtop CSRR system was tested for ethanol concentration prediction in water (10–96%), using 450 randomized measurements. PCA was applied for data exploration, and a PLS regression model with Leave-One-Group-Out cross-validation achieved a 3.7% RMSEP, six times better than univariate calibration (23.4%). The results show that ML can mitigate measurement uncertainties, making CSRR sensors viable for robust, low-cost concentration analysis under realistic laboratory conditions. | - |
dc.format.extent | 10 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1109/JSEN.2025.3608087 | - |
dc.relation.ispartof | IEEE Sensors Journal, 2025 | - |
dc.relation.uri | https://doi.org/10.1109/JSEN.2025.3608087 | - |
dc.rights | cc-by (c) Alonso-Valdesueiro, Javier, et al., 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) | - |
dc.subject.classification | Termometria | - |
dc.subject.classification | Ressonadors | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.other | Temperature measurements | - |
dc.subject.other | Resonators | - |
dc.subject.other | Machine learning | - |
dc.title | CSRR chemical sensing in uncontrolled environments by PLS regression | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 760625 | - |
dc.date.updated | 2025-09-22T16:34:34Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
900239.pdf | 2.25 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License