Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223334
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlonso-Valdesueiro, Javier-
dc.contributor.authorFernández Romero, Luis-
dc.contributor.authorGutiérrez-Gálvez, Agustín-
dc.contributor.authorMarco Colás, Santiago-
dc.date.accessioned2025-09-22T16:34:34Z-
dc.date.available2025-09-22T16:34:34Z-
dc.date.issued2025-09-18-
dc.identifier.issn1530-437X-
dc.identifier.urihttps://hdl.handle.net/2445/223334-
dc.description.abstractComplementary Split Ring Resonators (CSRRs) have been widely researched as planar sensors, but their use in routine chemical analysis is limited due to dependence on high-end equipment, controlled conditions, and susceptibility to environmental and handling variations. This work introduces a novel approach combining a CSRR sensor with machine learning (ML) to enable reliable quantification of compounds. A low-cost benchtop CSRR system was tested for ethanol concentration prediction in water (10–96%), using 450 randomized measurements. PCA was applied for data exploration, and a PLS regression model with Leave-One-Group-Out cross-validation achieved a 3.7% RMSEP, six times better than univariate calibration (23.4%). The results show that ML can mitigate measurement uncertainties, making CSRR sensors viable for robust, low-cost concentration analysis under realistic laboratory conditions.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/JSEN.2025.3608087-
dc.relation.ispartofIEEE Sensors Journal, 2025-
dc.relation.urihttps://doi.org/10.1109/JSEN.2025.3608087-
dc.rightscc-by (c) Alonso-Valdesueiro, Javier, et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationTermometria-
dc.subject.classificationRessonadors-
dc.subject.classificationAprenentatge automàtic-
dc.subject.otherTemperature measurements-
dc.subject.otherResonators-
dc.subject.otherMachine learning-
dc.titleCSRR chemical sensing in uncontrolled environments by PLS regression-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec760625-
dc.date.updated2025-09-22T16:34:34Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
900239.pdf2.25 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons