Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223768
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJacques Junior, Julio C. S.-
dc.contributor.authorGil Hernández, Sergio-
dc.date.accessioned2025-10-21T09:20:15Z-
dc.date.available2025-10-21T09:20:15Z-
dc.date.issued2025-06-06-
dc.identifier.urihttps://hdl.handle.net/2445/223768-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Julio C. S. Jacques Juniorca
dc.description.abstractMachine unlearning aims to remove the influence of specific data from trained models to protect privacy and comply with legal standards such as the “right to be forgotten”. However, existing Machine Unlearning research has largely overlooked how the construction of Forget Sets influences unlearning success. This project addresses this gap by systematically designing and evaluating four distinct Forget Set strategies (ranging from random sampling to adversarially motivated similarity) using a ResNet-18 classifier trained on the CIFAR-10 dataset. Two unlearning techniques, basic fine-tuning and fine-tuning with final-layer perturbation, are applied. To rigorously assess performance, this study defines and applies multiple evaluation metrics: Forgetting (how effectively a model erases targeted data), Utility (how well it retains performance on retained data), and a composite metric that balances both. The results reveal how Forget Set composition critically affects the effectiveness of Machine Unlearning strategies, offering new insights for future research and development.en
dc.format.extent57 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Sergio Gil Hernández, 2025-
dc.rightscodi: GPL (c) Sergio Gil Hernández, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationDret a l'oblitca
dc.subject.classificationProtecció de dadesca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherMachine learningen
dc.subject.otherRight to be forgottenen
dc.subject.otherData protectionen
dc.subject.otherComputer softwareen
dc.subject.otherBachelor's thesesen
dc.titleChallenging Forgets: Identifying and Analyzing Hard-to-Unlearn Dataca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
TFG_Gil_Hernández_Sergio.pdfMemòria1.81 MBAdobe PDFView/Open
codi.zipCodi font143.85 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons