Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223822
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDíaz, Oliver-
dc.contributor.authorIglesias Murrieta, José Javier-
dc.date.accessioned2025-10-22T10:35:11Z-
dc.date.available2025-10-22T10:35:11Z-
dc.date.issued2025-06-10-
dc.identifier.urihttps://hdl.handle.net/2445/223822-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Oliver Díazca
dc.description.abstractCancer remains a leading cause of mortality worldwide, with breast cancer being the most frequently diagnosed. Early and accurate detection is critical to improving patient outcomes, and recent advances in artificial intelligence (AI) have demonstrated significant potential in supporting this goal. Machine learning (ML) and deep learning (DL) techniques have been widely applied to medical imaging tasks enhancing diagnostic accuracy across modalities such as mammography, ultrasound, and magnetic resonance imaging (MRI). However, most models require task-specific training and large annotated datasets, limiting their scalability and generalizability.​ ​In response to these limitations, foundation models (FMs) have emerged as a promising shift in AI research. These large scale models are pre-trained on diverse data and can be adapted to a wide range of downstream tasks, including multimodal medical applications. Their capacity for zero-shot and few-shot learning presents opportunities for improving diagnostic support in data constrained settings. This research explores the application of FMs in breast cancer analysis, specifically assessing their ability to perform visual question answering (VQA) on the BCDR-F01 and BreakHis breast imaging datasets. The study involves selecting a suitable vision-language FM and evaluating zero-shot and fine-tuning strategies to breast imaging data. Results demonstrate that while FMs show promising zero-shot performance and flexibility, their effectiveness depends heavily on model scale, fine-tuning approach, and task formulation, especially in complex multimodal tasks such as VQA. Instruction tuning and multimodal alignment emerged as critical factors for improving clinical relevance. This research highlights the potential of FMs to serve as integrative tools for breast cancer analysis, leveraging multimodal data with minimal retraining. Nonetheless, challenges remain in optimizing performance for clinical deployment, particularly around interpretability, domain-specific adaptation, and computational cost.en
dc.format.extent65 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) José Javier Iglesias Murrieta, 2025-
dc.rightscodi: GPL (c) José Javier Iglesias Murrieta, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationCàncer de mamaca
dc.subject.classificationDiagnòstic per la imatgeca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationImatges mèdiquesca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherBreast canceren
dc.subject.otherDiagnostic imagingen
dc.subject.otherMachine learningen
dc.subject.otherImaging systems in medicineen
dc.subject.otherComputer softwareen
dc.subject.otherBachelor's thesesen
dc.titleExploring a multimodal foundation model on breast cancer visual question answeringca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
TFG_Iglesias_Murrieta_José_Javier.pdfMemòria13.24 MBAdobe PDFView/Open
codi.zipCodi font1.2 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons