Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarrido, L. (Luis), 1930-cat
dc.description.abstractIn this paper we consider a general action principle for mechanics written by means of the elements of a Lie algebra. We study the physical reasons why we have to choose precisely a Lie algebra to write the action principle. By means of such an action principle we work out the equations of motion and a technique to evaluate perturbations in a general mechanics that is equivalent to a general interaction picture. Classical or quantum mechanics come out as particular cases when we make realizations of the Lie algebra by derivations into the algebra of products of functions or operators, respectively. Later on we develop in particular the applications of the action principle to classical and quantum mechanics, seeing that in this last case it agrees with Schwinger's action principle. The main contribution of this paper is to introduce a perturbation theory and an interaction picture of classical mechanics on the same footing as in quantum mechanics.eng
dc.format.extent12 p.-
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document proporcionada per AIP i
dc.relation.ispartofJournal of Mathematical Physics, 1969, vol. 10, p. 1045-
dc.rights(c) American Institute of Physics, 1969-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationÀlgebres de Liecat
dc.subject.classificationPertorbació (Dinàmica quàntica)cat
dc.subject.classificationTeoria quànticacat
dc.subject.otherLie algebraseng
dc.subject.otherPerturbation (Quantum dynamics)eng
dc.subject.otherQuantum theoryeng
dc.titleGeneral Interaction Picture from Action Principle for Mechanicseng
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
12574.pdf814.86 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.