Please use this identifier to cite or link to this item:
Title: Three-dimensional aspects of fluid flows in channels. I. Meniscus and thin film regimes
Author: Ledesma Aguilar, Rodrigo Andrés
Hernández Machado, Aurora
Pagonabarraga Mora, Ignacio
Keywords: Dinàmica de fluids
Pel·lícules fines
Fluid dynamics
Thin films
Issue Date: 31-Oct-2007
Publisher: American Institute of Physics
Abstract: We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Note: Reproducció del document publicat a:
It is part of: Physics of Fluids, 2007, vol. 19, p. 102112-1-102112-10
Related resource:
ISSN: 0021-8979
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)
Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
559498.pdf259.74 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.