Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/62406
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Vives i Santa Eulàlia, Josep, 1963- | - |
dc.contributor.author | Marquès Llorens, Maite | - |
dc.date.accessioned | 2015-02-05T11:41:57Z | - |
dc.date.available | 2015-02-05T11:41:57Z | - |
dc.date.issued | 2014-07-15 | - |
dc.identifier.uri | http://hdl.handle.net/2445/62406 | - |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2014, Director: Josep Vives i Santa Eulàlia | ca |
dc.description.abstract | The aim of this final project is to study the pricing of zero-coupon bonds of different interest rate models in a continuous-time market in the absence of arbitrage opportunities, specifically, the Vasicek model and the Cox-Ingersoll-Ross model. First, this study needs to analyze the basis of the stochastic modeling of continuous-time market which includes to study some notions about the stochastic calculus. So, first the chapters 1 and 2 have some useful concepts and results of stochastic calculus like the Brownian motions, the stochastic integrals, the Itô calculus, the stochastic differential equations... Then, in the chapter 3 some economic concepts, the model of continuous-time market and the concept of portfolio self-financing, are defined; and also, this Black-Scholes pricing are studied. Later, in the chapter 4, some common models short term interest rate models are introduced. Last, in the chapter 5, the pricing of zero-coupon bonds are studied following the two named models in the former chapter, the Vasicek model and Cox-Ingersoll-Ross model, using pricing from chapter 3. During all the project, we suppose all the affirmations about finite random variables and stochastic processes are true P almost surely. To sum up, we have used different resources but overall, we have based on the books Introduction to stochastic calculus applied to finance ([Lam]) and An elementary introduction to stochastic interest rate modeling ([Pri]). | ca |
dc.format.extent | 52 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | cat | ca |
dc.rights | cc-by-nc-nd (c) Maite Marquès Llorens, 2014 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es | - |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | - |
dc.subject.classification | Processos estocàstics | - |
dc.subject.classification | Treballs de fi de grau | - |
dc.subject.classification | Moviment brownià | ca |
dc.subject.classification | Equacions diferencials estocàstiques | ca |
dc.subject.classification | Variables aleatòries | ca |
dc.subject.classification | Mercat financer | ca |
dc.subject.classification | Bons | ca |
dc.subject.classification | Models matemàtics | ca |
dc.subject.other | Stochastic processes | - |
dc.subject.other | Bachelor's theses | - |
dc.subject.other | Brownian movements | en |
dc.subject.other | Stochastic differential equations | en |
dc.subject.other | Random variables | en |
dc.subject.other | Financial market | en |
dc.subject.other | Bonds | en |
dc.subject.other | Mathematical models | en |
dc.title | Models estocàstics del tipus d'interès | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
memoria.pdf | Memòria | 516.98 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License