Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/62406
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVives i Santa Eulàlia, Josep, 1963--
dc.contributor.authorMarquès Llorens, Maite-
dc.date.accessioned2015-02-05T11:41:57Z-
dc.date.available2015-02-05T11:41:57Z-
dc.date.issued2014-07-15-
dc.identifier.urihttp://hdl.handle.net/2445/62406-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2014, Director: Josep Vives i Santa Eulàliaca
dc.description.abstractThe aim of this final project is to study the pricing of zero-coupon bonds of different interest rate models in a continuous-time market in the absence of arbitrage opportunities, specifically, the Vasicek model and the Cox-Ingersoll-Ross model. First, this study needs to analyze the basis of the stochastic modeling of continuous-time market which includes to study some notions about the stochastic calculus. So, first the chapters 1 and 2 have some useful concepts and results of stochastic calculus like the Brownian motions, the stochastic integrals, the Itô calculus, the stochastic differential equations... Then, in the chapter 3 some economic concepts, the model of continuous-time market and the concept of portfolio self-financing, are defined; and also, this Black-Scholes pricing are studied. Later, in the chapter 4, some common models short term interest rate models are introduced. Last, in the chapter 5, the pricing of zero-coupon bonds are studied following the two named models in the former chapter, the Vasicek model and Cox-Ingersoll-Ross model, using pricing from chapter 3. During all the project, we suppose all the affirmations about finite random variables and stochastic processes are true P almost surely. To sum up, we have used different resources but overall, we have based on the books Introduction to stochastic calculus applied to finance ([Lam]) and An elementary introduction to stochastic interest rate modeling ([Pri]).ca
dc.format.extent52 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Maite Marquès Llorens, 2014-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationProcessos estocàstics-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationMoviment browniàca
dc.subject.classificationEquacions diferencials estocàstiquesca
dc.subject.classificationVariables aleatòriesca
dc.subject.classificationMercat financerca
dc.subject.classificationBonsca
dc.subject.classificationModels matemàticsca
dc.subject.otherStochastic processes-
dc.subject.otherBachelor's theses-
dc.subject.otherBrownian movementsen
dc.subject.otherStochastic differential equationsen
dc.subject.otherRandom variablesen
dc.subject.otherFinancial marketen
dc.subject.otherBondsen
dc.subject.otherMathematical modelsen
dc.titleModels estocàstics del tipus d'interèsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria516.98 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons