Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/66706
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFité Piquer, Carles-
dc.contributor.advisorSoto López, Rodrigo-
dc.contributor.authorFernández Armisén, Alberto-
dc.date.accessioned2015-08-24T08:27:33Z-
dc.date.available2015-08-24T08:27:33Z-
dc.date.issued2015-06-
dc.identifier.urihttp://hdl.handle.net/2445/66706-
dc.descriptionTreballs Finals de Màster d'Enginyeria Química, Facultat de Química, Universitat de Barcelona, Curs: 2014-2015, Tutors: Carles Fité Piquer i Rodrigo Soto Lópezca
dc.description.abstractNowadays tertiary alkyl ethers are widely employed as high performance components for gasoline blending. This is because ethers enhance gasoline properties, such as octane rating. Ethers result essential to fulfil current environmental legislation, especially in more developed countries. For this reason etherification reactions have today an increasing interest for petrochemical industry. The simultaneous liquid-phase production of ethyl tert-butyl ether (ETBE) and tertamyl ethyl ether (TAEE) is the reaction system studied in the present work. These ethers are usually formed from ethanol (as common reactant) and isobutene (IB) for ETBE and isoamylenes (IA) for TAEE. These olefins are part of the C4 and C5 cuts from Fluid Catalytic Cracking (FCC) or Stream Cracking units (SC). Usual impurities from these cuts are basic compounds such as acetonitrile (ACN) and amines. ACN is present in very low concentration but even at such low concentrations is the main cause of acid catalyst deactivation. Diffuse deactivation, means of acid sites neutralization, is one of the most important drawbacks that affect the catalyst lifespan of industrial reactors. For the mentioned causes, it is therefore interesting to study the effect of the presence of ACN in the reactant streams on the catalysts used for etherification reactions. The catalysts used in this study are AmberlystTM 35 (A35) and Purolite CT® 275 (CT275), both widely employed in industrial etherification units.ca
dc.format.extent101 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Fernández Armisén, 2015-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.sourceMàster Oficial - Enginyeria Química-
dc.subject.classificationEnginyeria químicacat
dc.subject.classificationCatalitzadorscat
dc.subject.classificationGasolina-
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherChemical engineeringeng
dc.subject.otherCatalystseng
dc.subject.otherGasolineeng
dc.subject.otherMaster's theseseng
dc.titleDeactivation study of catalysts Amberlyst(tm) 35 and Purolite CT® 275 by acetonitrileeng
dc.title.alternativeEstudi de la desactivació dels catalitzadors Amberlyst(tm) 35 i Purolite CT® 275 en presència d’acetonitril-
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Enginyeria Química

Files in This Item:
File Description SizeFormat 
TFM_EQ_Alberto_Fernandez Armisen.pdf890.7 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons