Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/7461
Title: Functional dissection of the ash2 and ash1 transcriptomes provides insights into the transcriptional basis of wing phenotypes and reveals conserved protein interactions
Author: Beltran i Agulló, Sergi
Angulo i Parera, Mireia
Pignatelli, Miguel
Serras Rigalt, Florenci
Corominas, Montserrat (Corominas Guiu)
Keywords: Drosòfila
Expressió gènica
Transcripció genètica
Genetics
Development
Issue Date: 2007
Publisher: BioMed Central
Abstract: Background: The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes. Results: The analysis of wing imaginal disc transcriptomes from ash2 and ash1 mutants showed that they are highly similar. Functional annotation of regulated genes using Gene Ontology allowed identification of severely affected groups of genes that could be correlated to the wing phenotypes observed. Comparison of the differentially expressed genes with those from other genome-wide analyses revealed similarities between ASH2 and Sin3A, suggesting a putative functional relationship. Coimmunoprecipitation studies and immunolocalization on polytene chromosomes demonstrated that ASH2 and Sin3A interact with HCF (host-cell factor). The results of nucleosome western blots and clonal analysis indicated that ASH2 is necessary for trimethylation of the Lys4 on histone 3 (H3K4). Conclusion: The similarity between the transcriptomes of ash2 and ash1 mutants supports a model in which the two genes act together to maintain stable states of transcription. Like in humans, both ASH2 and Sin3A bind HCF. Finally, the reduction of H3K4 trimethylation in ash2 mutants is the first evidence in Drosophila regarding the molecular function of this trxG gene.
Note: Reproducció del document publicat a http://dx.doi.org/10.1186/gb-2007-8-4-r67
It is part of: Genome Biology, 2007, vol. 8, núm. 67
URI: http://hdl.handle.net/2445/7461
Related resource: http://dx.doi.org/10.1186/gb-2007-8-4-r67
ISSN: 1465-6914
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
550739.pdf6.93 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons