Please use this identifier to cite or link to this item:
Title: Transference for radial multipliers and dimension free estimates
Author: Auscher, Pascal, 1963-
Carro Rossell, María Jesús
Keywords: Multiplicadors (Matemàtica)
Maximal functions
Issue Date: 1994
Publisher: American Mathematical Society
Abstract: For a large class of radial multipliers on $ {L^p}({{\mathbf{R}}^{\mathbf{n}}})$, we obtain bounds that do not depend on the dimension n. These estimates apply to well-known multiplier operators and also give another proof of the boundedness of the Hardy-Littlewood maximal function over Euclidean balls on $ {L^p}({{\mathbf{R}}^{\mathbf{n}}})$, $ p \geq 2$, with constant independent of the dimension. The proof is based on the corresponding result for the Riesz transforms and the method of rotations.
Note: Reproducció del document publicat a:
It is part of: Transactions of the American Mathematical Society, 1994, vol. 342, núm. 2, p. 575-593.
Related resource:
ISSN: 1088-6850
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
83129.pdf1.63 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.