Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCattani, E. (Eduardo), 1946-cat
dc.contributor.authorD'Andrea, Carlos, 1973-cat
dc.contributor.authorDickenstein, Aliciacat
dc.description.abstractWe make a detailed analysis of the A-hypergeometric system (or GKZ system) associated with a monomial curve and integral, hence resonant, exponents. We characterize the Laurent polynomial solutions and show that these are the only rational solutions. We also show that for any exponent, there are at most two linearly independent Laurent solutions, and that the upper bound is reached if and only if the curve is not arithmetically Cohen--Macaulay. We then construct, for all integral parameters, a basis of local solutions in terms of the roots of the generic univariate polynomial associated with A. We determine the holonomic rank r for all integral exponents and show that it is constantly equal to the degree d of X if and only if X is arithmetically Cohen-Macaulay. Otherwise there is at least one exponent for which r = d + 1.-
dc.publisherDuke University Presscat
dc.relation.isformatofReproducció del document publicat a
dc.relation.ispartofDuke Mathematical Journal, 1999, vol. 99, núm. 2, p.
dc.rights(c) Duke University Press, 1999cat
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationFuncions hipergeomètriquescat
dc.subject.classificationGeometria algebraicacat
dc.subject.otherOther hypergeometric functions and integrals in several variableseng
dc.subject.otherFamilies, fibrationseng
dc.subject.otherDeformations of analytic structureseng
dc.subject.otherBasic hypergeometric functions of one variableeng
dc.titleThe A-hypergeometric system associated with a monomial curveeng
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
544297.pdf194.12 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.