Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/9174| Title: | Potential theory of signed Riesz Kernels: capacity and Hausdorff measure |
| Author: | Prat, Laura |
| Keywords: | Teoria del potencial (Matemàtica) Geometria algebraica Potentials and capacities Hausdorff and packing measures |
| Issue Date: | 2004 |
| Publisher: | Duke University Press |
| Abstract: | In this paper, we study the natural capacity γα related to the Riesz kernels x/∣x∣1 + α in ℝn, where 0 < α < n. For noninteger α, an unexpected behaviour arises: for 0 < α < 1, compact sets in ℝn with finite α-Hausdorff measure have zero γα capacity. In the Ahlfors-David regular case, for any noninteger index α, 0 < α < n, we prove that compact sets of finite α-Hausdorff measure have zero γα capacity. |
| Note: | Reproducció del document publicat a http://dx.doi.org/10.1155/S107379280413033X |
| It is part of: | International Mathematics Research Notices, 2004, vol. 2004, núm. 19, p. 937-981. |
| URI: | https://hdl.handle.net/2445/9174 |
| Related resource: | http://dx.doi.org/10.1155/S107379280413033X |
| ISSN: | 1073-7928 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 514784.pdf | 396.77 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
