Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/96644
Title: | Isomorphism classes of short Gorenstein local rings via Macaulay's inverse system |
Author: | Elías García, Joan Rossi, M. E. |
Keywords: | Isomorfismes (Matemàtica) Àlgebra Anells (Àlgebra) Isomorphisms (Mathematics) Algebra Rings (Algebra) |
Issue Date: | 2012 |
Publisher: | American Mathematical Society (AMS) |
Abstract: | Let $ K$ be an algebraically closed field of characteristc zero. In this paper we study the isomorphism classes of Artinian Gorenstein local $ K$-algebras with socle degree three by means of Macaulay's inverse system. We prove that their classification is equivalent to the projective classification of cubic hypersurfaces in $ \mathbb{P}_K ^{n }$. This is an unexpected result because it reduces the study of this class of local rings to the graded case. The result has applications in problems concerning the punctual Hilbert scheme $ \operatorname {Hilb}_d (\mathbb{P}_K^n) $ and in relation to the problem of the rationality of the Poincaré series of local rings. |
Note: | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-2012-05430-4 |
It is part of: | Transactions of the American Mathematical Society, 2012, vol. 364, num. 9, p. 4589-4604 |
URI: | http://hdl.handle.net/2445/96644 |
Related resource: | http://dx.doi.org/10.1090/S0002-9947-2012-05430-4 |
ISSN: | 0002-9947 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
617602.pdf | 257.67 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.