Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/9747| Title: | n=1/4 domain-growth universality class: Crossover to the n=1/2 class |
| Author: | Castán i Vidal, Maria Teresa Lindgård, Per-Anker |
| Keywords: | Física de l'estat sòlid Mecànica estadística Solid state physics Statistical mechanics |
| Issue Date: | 1990 |
| Publisher: | The American Physical Society |
| Abstract: | The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature. |
| Note: | Reproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevB.41.2534 |
| It is part of: | Physical Review B, 1990, vol. 41, núm. 4, p. 2534-2536. |
| URI: | https://hdl.handle.net/2445/9747 |
| Related resource: | http://dx.doi.org/10.1103/PhysRevB.41.2534 |
| ISSN: | 0163-1829 |
| Appears in Collections: | Articles publicats en revistes (Física Quàntica i Astrofísica) |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
