Please use this identifier to cite or link to this item:
Title: n=1/4 domain-growth universality class: Crossover to the n=1/2 class
Author: Castán i Vidal, Maria Teresa
Lindgård, Per-Anker
Keywords: Física de l'estat sòlid
Mecànica estadística
Solid state physics
Statistical mechanics
Issue Date: 1990
Publisher: The American Physical Society
Abstract: The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature.
Note: Reproducció digital del document publicat en format paper, proporcionada per PROLA i
It is part of: Physical Review B, 1990, vol. 41, núm. 4, p. 2534-2536.
Related resource:
ISSN: 0163-1829
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
35439.pdf520.04 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.