Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLindgård, Per-Ankercat
dc.contributor.authorCastán i Vidal, Maria Teresacat
dc.description.abstractThe domain growth after a quench to very low, finite temperatures is analyzed by scaling theory and Monte Carlo simulation. The growth exponent for the excess energy ΔE(t)∼ t − n is found to be n∼(1/4. The scaling theory gives exactly n=(1/4 for cases of hierarchical movement of domain walls. This explains the existence of a slow growth universality class. It is shown to be a singular Allen-Cahn class, to which belongs systems with domain walls of both exactly zero and finite curvature. The model studied has continuous variables, nonconserved order parameter, and has two kinds of domain walls: sharp, straight, stacking faults and broad, curved, solitonlike walls.-
dc.publisherThe American Physical Societycat
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i
dc.relation.ispartofPhysical Review B, 1990, vol. 41, núm. 7, p.
dc.rights(c) The American Physical Society, 1990cat
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationFísica de l'estat sòlidcat
dc.subject.classificationMecànica estadísticacat
dc.subject.otherSolid state physicseng
dc.subject.otherStatistical mechanicseng
dc.titleKinetics of slow domain growth: The n=1/4 universality classeng
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
35440.pdf780.35 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.