Please use this identifier to cite or link to this item:
Title: Kinetics of slow domain growth: The n=1/4 universality class
Author: Lindgård, Per-Anker
Castán i Vidal, Maria Teresa
Keywords: Física de l'estat sòlid
Mecànica estadística
Solid state physics
Statistical mechanics
Issue Date: 1990
Publisher: The American Physical Society
Abstract: The domain growth after a quench to very low, finite temperatures is analyzed by scaling theory and Monte Carlo simulation. The growth exponent for the excess energy ΔE(t)∼ t − n is found to be n∼(1/4. The scaling theory gives exactly n=(1/4 for cases of hierarchical movement of domain walls. This explains the existence of a slow growth universality class. It is shown to be a singular Allen-Cahn class, to which belongs systems with domain walls of both exactly zero and finite curvature. The model studied has continuous variables, nonconserved order parameter, and has two kinds of domain walls: sharp, straight, stacking faults and broad, curved, solitonlike walls.
Note: Reproducció digital del document publicat en format paper, proporcionada per PROLA i
It is part of: Physical Review B, 1990, vol. 41, núm. 7, p. 4659-4662.
Related resource:
ISSN: 0163-1829
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
35440.pdf780.35 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.