Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSimó, Carles-
dc.contributor.authorFerrer Campo, Àlex-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Carles Simóca
dc.description.abstractDifferential Galois Theory opens the door to a fairly recent field of study. Revisiting the ideas behind Galois theory of algebraic equations in polynomials, we will learn on the development of an analogous approach applied to differential equations. We will provide links with Dynamical Systems in terms of integrability, in particular, of Hamiltonian Systems. Finally, we will apply our results to a particular example and design our own original strategy to apply the
dc.format.extent54 p.-
dc.rightscc-by-nc-nd (c) Àlex Ferrer Campo, 2016-
dc.subject.classificationTeoria de Galois-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationSistemes hamiltoniansca
dc.subject.classificationEquacions diferencials algebraiquesca
dc.subject.otherGalois theory-
dc.subject.otherBachelor's theses-
dc.subject.otherHamiltonian systemseng
dc.subject.otherDifferential-algebraic equationseng
dc.titleObstructions to the integrability of hamiltonian systems from differential Galois theoryca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria26.82 MBAdobe PDFView/Open
monodromy_integration_plots.nbMonodromy integration plots2.35 MBUnknownView/Open
torus.nbTorus10.79 MBUnknownView/Open

This item is licensed under a Creative Commons License Creative Commons