Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/98168
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMañosas Castejón, María-
dc.contributor.authorSpiering, Michelle M.-
dc.contributor.authorDing, Fangyuan-
dc.contributor.authorBensimon, David-
dc.contributor.authorAllemand, Jean-François-
dc.contributor.authorBenkovic, Stephen J.-
dc.contributor.authorCroquette, Vincent-
dc.date.accessioned2016-05-02T14:41:54Z-
dc.date.available2016-05-02T14:41:54Z-
dc.date.issued2012-
dc.identifier.issn0305-1048-
dc.identifier.urihttp://hdl.handle.net/2445/98168-
dc.description.abstractReplicative holoenzymes exhibit rapid and processive primer extension DNA synthesis, but inefficient strand displacement DNA synthesis. We investigated the bacteriophage T4 and T7 holoenzymes primer extension activity and strand displacement activity on a DNA hairpin substrate manipulated by a magnetic trap. Holoenzyme primer extension activity is moderately hindered by the applied force. In contrast, the strand displacement activity is strongly stimulated by the applied force; DNA polymerization is favoured at high force, while a processive exonuclease activity is triggered at low force. We propose that the DNA fork upstream of the holoenzyme generates a regression pressure which inhibits the polymerization-driven forward motion of the holoenzyme. The inhibition is generated by the distortion of the template strand within the polymerization active site thereby shifting the equilibrium to a DNA-protein exonuclease conformation. We conclude that stalling of the holoenzyme induced by the fork regression pressure is the basis for the inefficient strand displacement synthesis characteristic of replicative polymerases. The resulting processive exonuclease activity may be relevant in replisome disassembly to reset a stalled replication fork to a symmetrical situation. Our findings offer interesting applications for single-molecule DNA sequencing.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOxford University Press-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1093/nar/gks253-
dc.relation.ispartofNucleic Acids Research, 2012, vol. 40, num. 13, p. 6174-6186-
dc.relation.urihttp://dx.doi.org/10.1093/nar/gks253-
dc.rightscc-by-nc (c) Mañosas Castejón, María et al., 2012-
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationADN-
dc.subject.classificationPolimerització-
dc.subject.otherDNA-
dc.subject.otherPolymerization-
dc.titleMechanism of strand displacement synthesis by DNA replicative polymerases-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec618220-
dc.date.updated2016-05-02T14:42:00Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/267862/EU//MAGREPS-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid22434889-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
618220.pdf9.62 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons