Please use this identifier to cite or link to this item:
Title: Front microrheology of the non-Newtonian behavior of blood: scaling theory of erythrocyte aggregation by aging
Author: Trejo Soto, Claudia Andrea
Costa Miracle, E.
Rodríguez-Villarreal, Ivón
Cid Vidal, Joan
Castro, Mario
Alarcón Cor, Tomás
Hernández Machado, Aurora
Keywords: Reologia (Biologia)
Plasma sanguini
Rheology (Biology)
Blood plasma
Issue Date: 24-Mar-2017
Publisher: Royal Society of Chemistry
Abstract: We introduce a new framework to study the non-Newtonian behaviour of fluids at the microscale based on the analysis of front advancement. We apply this methodology to study the non-linear rheology of blood in microchannels. We carry out experiments in which the non-linear viscosity of blood samples is quantified at different haematocrits and ages. Under these conditions, blood exhibits a power-law dependence on the shear rate. In order to analyse our experimental data, we put forward a scaling theory which allows us to define an adhesion scaling number. This theory yields a scaling behaviour of the viscosity expressed as a function of the adhesion capillary number. By applying this scaling theory to samples of different ages, we are able to quantify how the characteristic adhesion energy varies as time progresses. This connection between microscopic and mesoscopic properties allows us to estimate quantitatively the change in the cell-cell adhesion energies as the sample ages
Note: Reproducció del document publicat a:
It is part of: Soft Matter, 2017, vol. 13, p. 3042-3047
Related resource:
ISSN: 1744-683X
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
672392.pdf2.77 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons